

# **Innovating Maine's Future**

Dr. Habib Dagher, Executive Director Advanced Structures and Composites Center, UMaine MEREDA 2024 Annual Real Estate Forecast Conference Portland, Maine Feb 29, 2024

**Largest Univ.-based** research Center in Maine **Founded through the NSF** in 1996 2,700+ students funded from 35 majors **Over 400 Personnel** 100,000 ft<sup>2</sup> lab **10+ spinoff companies** 1,000 publications

1865

130+ patents

385

- 30,000 Visitors
- 1,600 media stories



////////////

# **ASCC** Partners and Clients







# **Awards & Honors**

Over 40 state, national and international excellence awards



2015 Transportation Champion of Change



American Council of Engineering Companies

2011 Engineering Excellence

MAINE DEVELOPMENT FOUNDATION

2008 "Champion of Economic Development"



Trade Center

2017 Innovator of the Year



2021 Academic Pioneer Award 2010 Most Creative Product 2007 People's Choice 2007 Best of Show



Three 2019 Guinness World Records





2011 Charles Pankow Award for Innovation



**Strategic Plan 2020** 



## **GEM - Green Energy and Materials**

#### Developing the Technologies and Educating the Leaders



#### **Application Space**

Civil Infrastructure, Renewable Energy, Defense, Marine and Aerospace





• Some steel strands replaced with carbon composite strands



Subject to the restrictions on the title page



### Grist Mill Bridge Construction





#### NASA Hypersonic Inflatable Aerodynamic Decelerator

The HIAD is a nose-cone-mounted inflatable structure consisting of multiple, concentric, nitrogen-filled tori that is designed to decelerate and protect spacecraft during atmospheric re-entry.

NASA successfully demonstrated HIAD on a small-scale, but their models were not aligning with expectations. The ASCC was engaged by NASA to validate a model that will facilitate optimized HIAD designs to deploy on critical missions with confidence.







## Maine Fossil Fuel Expenses = \$3.6-5.8 billion/yr



# 3% of Offshore Wind Resource Electrifies Heating and Transportation = 5 GW

# **US Potential for Floating Wind**



60% of US resource requires floating technology US Earth Shot BOEM awarded CA leases: GOM & Oregon next



### **Structural and Material Testing**

MADE IN MAINE OF

......





Subject to the restrictions on the title page

## **Alfond W<sup>2</sup> Ocean Engineering Lab**

Wind machine Rotatable

MA A

**Tow carriage** 



MAINE

MAINE

#### **16-actuator wavemaker**



# Floating Offshore Wind



![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_16_Picture_0.jpeg)

VolturnUS 1:8 Launch

May 31, 2013

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

# **Tow-Out Testing**

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_18_Picture_0.jpeg)

# Castine, Maine (2013)

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

## 50-Year Return Period Storm

![](_page_20_Picture_0.jpeg)

## Mooring Lines: Synthetic or Chain

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

# UMaine Floating Technology Roadmap 1:10:100

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

## **Additive Manufacturing Opportunities**

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### **3D Printed Patrol Vessel**

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

#### Can we Use Wood Residuals to Print Homes? 1 million tons/year 600ft<sup>2</sup> home needs 10 tons

#### Sawmills Residues

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

#### Stronger than Concrete

![](_page_25_Picture_5.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

# Bi 13D

# The world's first entirely bio-based 3D printed home

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_27_Picture_0.jpeg)

#### BioHome3D Going Through "A Good Old Maine Winter"

BiOI

- and -

![](_page_29_Picture_0.jpeg)

# Contributors

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

Subject to the restrictions on the title page

#### 9-Units Development with Penquis, KeyBank

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

Subject to the restrictions on the title page

![](_page_31_Picture_0.jpeg)

# **Green Engineering & Materials** Factory of the Future Industry 4.0

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

# Workforce of the Future

GEM Factory of the Future prepares students to succeed at the frontiers of engineering, computing and information science

- 1. 200+ paid experiential learning opportunities offered annually
- Immersive learning environment for students to experiment with hardware, software and computational resources
- Fully-digitized, adaptive learning factory relies on computational methods and tools including opticalbased analytics, augmented reality, real-time monitoring, digital twin, etc.

![](_page_32_Picture_5.jpeg)

![](_page_33_Picture_0.jpeg)

## **Technology Roadmap for Biobased Modular 3D Printed Homes**

![](_page_33_Figure_2.jpeg)

# GEM Factory of the Future Façade Study

![](_page_34_Picture_1.jpeg)